Articles (For Detailed Publications Click Here)
26. K. H. Alam, and Y. Rohen, Fixed points of set-valued (α, F )-Geragthy, G-Prešić type contractions and some applications, Boletim da Sociedade Paranaense de Matemática, Accepted (ESCI, Scopus)
25. K. H. Alam, M. Zhou, Y. Rohen, and S. Chandok, A unified approach to equiexpansive λ-set contractions and their application to fractional differential systems, Fixed Point Theory, Accepted (SCI)
24. A. Tomar, K. H. Alam, M. Sajid, Y. Rohen, and S. S. Singh, Fibonacci-Ishikawa iterative method in modular spaces for asymptotically non-expansive monotonic mathematical operators, Journal of Inequalities and Applications, 2025, 2025, 126. https://doi.org/10.1186/s13660-025-03378-4 (SCI)
23. K. H. Alam, Y. Rohen, and A. Tomar, Fixed point and its geometry and application for multivalued integral type contractions in 𝑀_𝑣^𝑏-metric spaces, Hacettepe Journal of Mathematics and Statistics, 54(5), 2025, 1708-1724. https://doi.org/10.15672/hujms.1471688 (SCI)
22. K. H. Alam, A. Dolai, Y. Rohen, S. Panday, and S. Mani, On Picard-CR iterations involving weak perturbative contraction operators and application to reversible chemical reactions, Applied Mathematics and Computation, 512, 2026, 129744. https://doi.org/10.1016/j.amc.2025.129744 (SCI)
21. K. H. Alam, Y. Rohen, N. Saleem, M. Aphane, and A. Althobaiti, From α-fuzzy fixed points to nonlinear Cauchy differential inclusions in intuitionistic fuzzy metric spaces, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2025, 1-14. https://doi.org/10.1177/18758967251366331 (SCI)
20. K. H. Alam, Y. Rohen, A. Tomar, and M. Sajid, Set-valued contractions with an application to Fredholm integral inclusions in 𝑀_𝑣^𝑏−metric spaces, AIMS Mathematics, 10(9), 2025, 20742-20758. https://doi.org/10.3934/math.2025926 (SCI)
19. K. H. Alam, Y. Rohen, A. H. Albargi, and A. Hussain, Application to fixed point theory of α − θ − E−Geraghty Pata proximal contractions, Fixed Point Theory and Algorithms for Sciences and Engineering, 2025, 2025, 19. https://doi.org/10.1186/s13663-025-00799-0 (ESCI, Scopus)
18. K. H. Alam, Y. Rohen, and S. Surendra Singh, Analysis of a refined iterative method with a new setting and applications to various models of partial differential equations, Numerical Algorithms, 2025. https://doi.org/10.1007/s11075-025-02159-w (SCI)
17. K. H. Alam, Y. Rohen and A. Tomar, Approximating the solutions of fractional differential equations with a novel and more efficient iteration procedure, The Journal of Supercomputing, 81(9), 2025, 1084. https://doi.org/10.1007/s11227-025-07562-7 (SCI)
16. K. H. Alam, Y. Rohen, A. Tomar, N. Saleem, M. Aphane, and A. Razzaque, An effective iterative process utilizing transcendental sine functions for the generation of Julia and Mandelbrot sets, Fractal and Fractional, 9(1), 2025, 40. https://doi.org/10.3390/fractalfract9010040 (SCI)
15. K. H. Alam, Y. Rohen, A. Tomar, and J. Ahmad, A new extended metric space and solution of rocket’s ascending motion, Asian-European Journal of Mathematics, 18(6), 2025, 2550001. https://doi.org/10.1142/S1793557125500019 (ESCI, Scopus)
14. K. H. Alam, Y. Rohen, N. Saleem, M. Aphane, and A. Razzaque, On escape criterion of an orbit with s-convexity and illustrations of the behavior shifts in Mandelbrot and Julia set fractals, PLOS ONE, 20(1), 2025, e0312197 https://doi.org/10.1371/journal.pone.0312197 (SCI)
13. K. H. Alam, Y. Rohen, A. Tomar, and M. Sajid, On geometry of fixed figures via φ−interpolative contractions and application of activation functions in neural networks and machine learning models, Ain Shams Engineering Journal, 16(1), 2025, 103182. https://doi.org/10.1016/j.asej.2024.103182 (SCI)
12. K. H. Alam, and Y. Rohen, Convergence of a refined iterative method and its application to fractional Volterra-Fredholm integro-differential equations, Computational and Applied Mathematics, 44(1), 2025, 2. https://doi.org/10.1007/s40314-024-02964-4 (SCI)
11. K. H. Alam, Y. Rohen, A. Tomar, and M. Sajid, On fixed point and solution to nonlinear matrix equations related to beam theory in 𝑀_𝑣^𝑏-metric space, Journal of Nonlinear and Convex Analysis, 25(9), 2024, 2149-2171. (SCI) http://www.yokohamapublishers.jp/online2/jncav25-9.html
10. K. H. Alam, Y. Rohen, and A. Tomar, (α, F)-Geraghty type generalized F-contractions on non-Archimedean fuzzy metric-unlike spaces, Demonstratio Mathematica, 57(1), 2024, 20240046. https://doi.org/10.1515/dema-2024-0046 (SCI)
9. K. H. Alam, Y. Rohen, I. A. Kallel, and J. Ahmad, Solution of an algebraic linear system of equations using fixed point results in C^*-algebra valued extended Branciari S_b-metric spaces, International Journal of Analysis and Applications, 22, 2024, 139. https://doi.org/10.28924/2291-8639-22-2024-139 (ESCI, Scopus)
8. K. H. Alam and Y. Rohen, Non-self Ćirić 𝛼 +(θ, ϕ)-proximal contractions with best proximity point, Palestine Journal of Mathematics, 13(2), 2024, 30-40. https://pjm.ppu.edu/paper/1668 (Scopus)
7. K. H. Alam, Y. Rohen, N. Saleem, M. Aphane, and A. Razzaque, Convergence of Fibonacci-Ishikawa iteration procedure for monotone asymptotically non-expansive mappings, Journal of Inequalities and Applications, 2024, 2024, 81. https://doi.org/10.1186/s13660-024-03156-8 (SCI)
6. K. H. Alam, Y. Rohen, S. S. Singh, K. M. Devi, and L. Biswakumar, New best proximity point results for different types of non-self proximal contractions with an application, Nonlinear Functional Analysis and Applications, 29(2), 2024, 581-596. https://doi.org/10.22771/nfaa.2024.29.02.16 (Scopus)
5. K. H. Alam, and Y. Rohen, An efficient iterative procedure in hyperbolic space and application to non-linear delay integral equation, Journal of Applied Mathematics and Computing, 70(5), 2024, 4297-4317. https://doi.org/10.1007/s12190-024-02134-z (SCI)
4. M. P. Singh, Y. Rohen, K. H. Alam, J. Ahmad, and W. Emam, On fixed point and an application of 𝐶∗−algebra valued (𝛼,𝛽)−Bianchini-Grandolfi gauge contractions, AIMS Mathematics, 9(6), 2024, 15172-15189. https://doi.org/10.3934/math.2024736 (SCI)
3. K. H. Alam, Y. Rohen, and A. Tomar, On fixed point and its application to the spread of infectious diseases model in 𝑀_𝑣^𝑏−metric space, Mathematical Methods in the Applied Sciences, 47(7), 2024, 6489-6503. https://doi.org/10.1002/mma.9933 (SCI)
2. M. P. Singh, Y. Rohen, N. Saleem, K. H. Alam, K.A. Singh, and A. Razzaque, On fixed point equations involving Geraghty type contractions with solution to integral equation, Mathematics, 11(24), 2023, 4882. https://doi.org/10.3390/math11244882 (SCI)
1. K. H. Alam, Y. Rohen and N. Saleem, Fixed points of (α, β, F*) and (α, β, F**)-weak Geraghty contractions with an application, Symmetry, 15(1), 2023, 243. https://doi.org/10.3390/sym15010243 (SCI)
Book Chapters
3. M. Nazam, G. Alsahli, M. Arshad, and K. H. Alam, Advancing Perov's type contraction principles and application to infectious disease model, Modern Approaches to Fixed Point Theory and Applications: Theory, Methods and Integrative Approaches, Springer, Singapore, Accepted (Scopus)
2. D. Chand, K. H. Alam, Y. Rohen, and S. S. Singh, On S-polynomial type contractions in S-metric spaces and fixed-point results, Applications of Fixed-Point Theorem, Springer, Singapore, Accepted (Scopus)
1. K. H. Alam, Y. Rohen, M. S. Khan, and S. S. Singh, Some recent fixed point results in S_b−metric spaces and applications, Recent Developments in Fixed-Point Theory, Industrial and Applied Mathematics, Springer, Singapore, 2024, 371-386. https://doi.org/10.1007/978-981-99-9546-2_17 (Scopus)
Patents & Design Patents
1. Applicants: K. H. Alam, Y. Rohen, and A. Tomar; Filing Date: 30/06/2025 18:48:49; Design Number: 464109-001; Article Name: Processing Device for Computational Fractal Analysis; Class: 14-02-Data Processing Equipment as well as Peripheral Apparatus and Devices; Journal Number: 42/2025 (Intellectual Property India) Journal Date:17/10/2025 00:00:00 Certificate